
_01

LLVM Multicall Driver

Alex Brachet (abrachet@google.com)



_02

● Many tools linked into one binary
○ Like “busybox”

● One binary called just llvm and we install tools like clang as a symlink to it
● Convenience of static linking with the size of a dynamically linked toolchain

○ Some tools have a lot of overlap. clang-scan-deps was 112M standalone 
and less than 1M added size to the driver binary

● We aim to a ship a new toolchain weekly
○ For some users this cadendence was high to be a downloading an entire 

toolchain
● Saved over 860M in binary size

○ 1.5G to 640M

What is the multicall driver
 



_03

What is the multicall driver
 



_04

How to use
 



_05

How to use
 



_06

● Hardcoded expectation that clang is a symlink to clang-{ver}
● clang -### -canonical-prefixes

○ The output of this looks like {full_path}/llvm clang …
○ -canonical-prefixes instructs clang to take the realpath of itself, 

which in the driver build will point to llvm
○ Another hardcoded expectation that the binary clang invokes will be 

called clang

Issues we ran into rolling out
 



_07

● Not all tools are part of the multicall driver
● Global cl::opt’s with the same value can’t be linked together

○ We need to first transition tools to use OptTable before we can add 
them to the driver build

○ Clang’s use of cl::opt objects in passes is fine because these names 
are unique and will not conflict with other tools

● Many clang tools left
○ These use clang::tooling::CommonOptionsParser which expects 

that options are parsed with llvm::cl
○ These tools are not generally large so we haven’t prioritized this work

Remaining tools
 



_08

Special thanks to

chris.bieneman@me.com

maskray@google.com

phosek@google.com

andresvi@google.com


